llama_index的CVE-2024-4181漏洞根因分析

2024-11-23 178 0

在日常开发工作中,我遇到过一个让人心惊胆战的情况。

当时,我们的团队正忙着处理用户反馈,一个客户报告说他们的服务器上运行的代码遭受了异常的攻击迹象。

经过深入调查,我们发现问题的根源在于代码中对eval函数的不当使用,这暴露了系统的巨大风险。

类似的问题也出现在了llama_index库(版本0.9.47)中的RunGptLLM类中,该类存在一个命令注入漏洞。

这个库被JinaAI的RunGpt框架用来连接语言学习模型(LLM)。

该漏洞的产生是由于不正确地使用了eval函数,这种错误的使用使得恶意或被攻陷的LLM托管服务商可以在客户端机器上执行任意命令。

这个问题已经在版本0.10.13中得到了修复。如果这个漏洞被利用,托管服务商可以获得对客户端机器的完全控制权限。

下面是一个类似的代码示例,用以说明漏洞的基本原理:

import json
import os

# 模拟用户输入的数据
data = "__import__('os').system(\"echo '# Hello, Markdown!' > hello.md\")"

def main():
    # 直接在 eval 中使用用户可控的数据
    item_dict = json.loads(json.dumps(eval(data)))

if __name__ == "__main__":
    main()

在以上代码中,我们用到了eval函数直接执行用户输入的内容,这是一种非常危险的做法。

eval函数会将传入的字符串作为代码执行,这意味着如果用户输入包含恶意命令,例如上例中的__import__('os').system(...),它会执行任意命令。

在这个示例中,攻击者可以在你的系统中创建、删除文件甚至运行其它系统命令,完全控制机器。

为了避免这种情况,应避免直接使用eval来处理用户输入的数据。如果必须执行类似功能,可以考虑使用更为安全的库或采取严格的输入验证和限制。

总结来说,eval函数虽然强大,但也非常危险,它常常成为安全漏洞的根源。

在安全开发中,我们应尽量避免这种不安全的做法,替代方案包括使用专门的解析库、明确的数据验证以及安全沙箱环境等方法,确保代码在任何情况下都不会被恶意利用。

这个漏洞也被官方定义为CVE-2024-4181,

详细地址在:https://vulners.com/github/GHSA-PW38-XV9X-H8CH

llama_index的CVE-2024-4181漏洞根因分析插图
相关PR见:https://github.com/run-llama/llama_index/commit/d73715eaf0642705583e7897c78b9c8dd2d3a7ba?diff=unified#diff-024fc1b3e2dc420507d50a44ae07ef0764c33ddcf84b61aa8b1bba4eb15e6e6dL217


4A评测 - 免责申明

本站提供的一切软件、教程和内容信息仅限用于学习和研究目的。

不得将上述内容用于商业或者非法用途,否则一切后果请用户自负。

本站信息来自网络,版权争议与本站无关。您必须在下载后的24个小时之内,从您的电脑或手机中彻底删除上述内容。

如果您喜欢该程序,请支持正版,购买注册,得到更好的正版服务。如有侵权请邮件与我们联系处理。敬请谅解!

程序来源网络,不确保不包含木马病毒等危险内容,请在确保安全的情况下或使用虚拟机使用。

侵权违规投诉邮箱:4ablog168#gmail.com(#换成@)

相关文章

如何使用MaskerLogger防止敏感数据发生泄露
docker的使用和遇到的问题解决记录
Vault: 密码管理蓝队篇(上)
APKLeaks:一款针对APK文件的数据收集与分析工具
RequestShield:一款HTTP请求威胁识别与检测工具
2025年十大最佳漏洞管理工具分享

发布评论