爬虫“拥抱大模型”,有没有搞头?

2024-07-30 411 0

爬虫“拥抱大模型”,有没有搞头?插图

前言

大模型是当前最热门的研究方向之一,千行百业加速“拥抱大模型”。如今,越来越多的研究机构和企业选择开放大模型的源代码和训练数据,促进了学术界和工业界的合作与交流,推动了技术进步,相关生态越来越好。这也使得,无论体量大小,各公司都有参与的机会,越来越多的大模型开始支持多模态输入和输出,能够处理文本、图像、音频等多种类型的数据。

但是这么多的大模型,谁更胜一筹呢?谁能与爬虫产生更好的反应呢?本文将对各大常见的国内外大语言模型进行对比测试,从数据层面,体现一些直观的信息。

各大模型真实速度测评:https://mp.weixin.qq.com/s/UFji5m3Ji1gvsQXqDTy9NQ

大语言模型

大语言模型(Large Language Model, LLM)是一种基于深度学习的人工智能模型,专门用于处理和生成自然语言文本,下文的相关解释源自 GPT-4o:

  • 模型规模:大语言模型通常具有数十亿甚至数千亿个参数,使其能够捕捉复杂的语言模式和结构。规模越大,模型在理解和生成语言方面的能力通常越强。

  • 训练数据:这些模型在大规模的文本数据集上进行预训练,这些数据集可能包含书籍、文章、网页、对话记录等。这种大规模预训练使得模型能够掌握广泛的语言知识和常识。

  • 架构:大多数现代大语言模型基于 Transformer 架构。Transformer 架构使用自注意力机制,能够高效地处理长距离依赖关系,从而在生成连贯和上下文相关的文本方面表现出色。

  • 预训练和微调:大语言模型首先在大规模通用数据集上进行预训练,掌握基本语言能力。然后,可以通过在特定领域或任务上的数据进行微调,以提升其在特定应用场景中的性能。

  • 多任务能力:由于预训练过程中的广泛语言暴露,大语言模型通常具有多任务能力,能够处理多种自然语言处理任务,如文本生成、翻译、问答、文本分类等。

  • 应用领域:大语言模型在许多领域都有广泛应用,包括对话系统、机器翻译、内容生成、情感分析、信息提取等。

大语言模型具备高效的语言理解和生成能力,广泛的应用场景,能够处理复杂的语言任务。

不过大语言模型对资源的消耗巨大:

据斯坦福人工智能研究所发布的《2023 年 AI 指数报告》,AI 大语言模型 GPT-3 一次训练的耗电量为 1287 兆瓦时,大概相当于 3000 辆特斯拉电动汽车共同开跑、每辆车跑 20 万英里所耗电量的总和。报告同时提出,AI 大语言模型 GPT-3 一次训练,相当于排放了 552 吨二氧化碳。

弗吉尼亚理工大学研究指出,Meta 公司在 2022 年使用了超过 260 万立方米的水,主要作用是为数据中心提供冷却。

据了解,人工智能大模型 GPT-4 的主要参数是 GPT-3 的 20 倍,计算量是 GPT-3 的 10 倍,能耗也随之大幅增加。

上述仅为数据中心能耗成本,GPU、其他硬件、人力成本等等,花费都是惊人的。据网上数据统计,如果想在 10 天内训练一个千亿规模的大型模型,大约需要花费 1.43 亿美元!

常见的大语言模型

国内

① 百度 - ERNIE Bot(文心一言)

基于 ERNIE 模型,专注于提供智能对话和问答服务,能够理解和生成高质量的自然语言文本。

② 腾讯 - Hunyuan(混元)

腾讯 AI Lab 推出的大语言模型,旨在提供高效、智能的文本生成和理解能力。

③ 京东 - Lingxi(言犀)

京东旗下的大语言模型,专注于提升智能对话和自然语言处理能力。

④ 月之暗面 - kimi

kimi 模型强调对多种数据类型(如文本、图像、音频等)的处理能力,以实现更广泛的应用场景和更强大的语言理解和生成能力。

⑤ 阿里 - Tongyi Qianwen(通义千问)

提供企业级自然语言处理服务,包括智能客服、智能搜索、文本分析和机器翻译等。

⑥ 华为 - PanGu(盘古)

大型预训练语言模型,强调对中文的理解和生成能力。

⑦ 智源研究院 - WuDao(悟道)

大规模预训练语言模型,参数规模达到 1.75 万亿,适用于多种 NLP 任务。

国外

① OpenAI - ChatGPT 系列

基于 Transformer 架构的大规模生成式预训练模型,具备强大的语言理解和生成能力。

② Google - BERT and T5

BERT 侧重于双向编码表示,适用于各种 NLP 任务。T5 将所有 NLP 任务转换为文本到文本的形式,具有很高的灵活性。

③ Microsoft - Turing NLG

大规模生成式预训练模型,参数规模巨大,具有卓越的文本生成能力。

④ Facebook - OPT

开源的大规模预训练语言模型,强调透明性和可解释性。

⑤ DeepMind - Gopher

DeepMind 推出的 2800 亿参数的大规模语言模型,在多个基准测试中表现出色。

本文测试的大语言模型为:腾讯元宝、文心一言 3.5、kimi、通义千问 2.5、GPT-4o。

常识问题分析

Why did Zhou Shuren beat up Lu Xun

经典问题:“鲁迅为什么暴打周树人”,众所周知,鲁迅(本名周树人)曾在文章中自称“鲁迅打周树人”,这是他在自我剖析和自嘲中的一种表达方式,并不是他真的打自己  ̄▽ ̄。之前这个问题,就存在个别大模型答错的情况:

爬虫“拥抱大模型”,有没有搞头?插图1

最近测试,各大模型,在这个问题上都能准确回答了:

爬虫“拥抱大模型”,有没有搞头?插图2

但是换个问法,哎嘿,比如用英文,有的大模型可就宕机了  ̄▽ ̄:

爬虫“拥抱大模型”,有没有搞头?插图3

请参阅相关网站了解更多信息,并随时向我提出任何其他问题。

数字 7.11 跟 7.9 比,哪个大

本文测试的国产的大语言模型,这个问题上都能回答准确:

爬虫“拥抱大模型”,有没有搞头?插图4

倒是 GPT-4o 出了岔劈:

爬虫“拥抱大模型”,有没有搞头?插图5

英文提问结果也是一样:

爬虫“拥抱大模型”,有没有搞头?插图6

GPT-4 能回答正确,看来 GPT-3.5、GPT-4o 还是明显弱一些啊:

爬虫“拥抱大模型”,有没有搞头?插图7

验证码坐标识别

数据采集过程中,可能会碰到各种风控策略。其中,验证码人机验证是较为常见的,点选类验证码需要识别出相应的坐标,碰到这种情况,一般要么自己训练模型,要么对接打码平台。现在也可以将识别工作交给大模型,我们来看看,相同的问法,各家大模型,在识别验证码坐标上的表现。

GPT-4o

问题,选出相似的,并给出坐标:

爬虫“拥抱大模型”,有没有搞头?插图8

问题,找出鸟的位置:

爬虫“拥抱大模型”,有没有搞头?插图9

通义千问

问题,选出相似的,并给出坐标:

爬虫“拥抱大模型”,有没有搞头?插图10

问题,找出鸟的位置:

爬虫“拥抱大模型”,有没有搞头?插图11

Kimi

Kimi 暂时还不能分析图片文件:

爬虫“拥抱大模型”,有没有搞头?插图12

文心一言

问题,选出相似的,并给出坐标(说了一堆,不知道在说什么):

爬虫“拥抱大模型”,有没有搞头?插图13

问题,找出鸟的位置:

爬虫“拥抱大模型”,有没有搞头?插图14

腾讯元宝

问题,选出相似的,并给出坐标:

爬虫“拥抱大模型”,有没有搞头?插图15

问题,找出鸟的位置:

爬虫“拥抱大模型”,有没有搞头?插图16

综上所述,在图片识别方面,GPT 还是有着明显的优势,测试结果:GPT-4o > 腾讯元宝 > 通义千问 = 文心一言 > Kimi。

代码解混淆

今时不同往日,现在扣算法就会发现,很多网站的关键代码都经过了混淆处理,掩盖了真实的算法逻辑,增大了逆向的难度。常规的处理方法,要么硬跟,要么使用 AST 技术解混淆,相关技术推荐蔡老板的公众号(菜鸟学Python编程)。

能解混淆自然是最好的,整体逻辑会清晰很多。接下来,我们用一段简单的经过 OB 混淆了的代码,交给各大模型,看看他们的处理能力如何。

原代码:

function hi() {
  console.log("Hello World!");
}
hi();

OB 混淆后:

OB 混淆测试网站:https://www.obfuscator.io

(function (_0x3e0fd2, _0x4d9507) {
    var _0x35a832 = _0x49f9, _0x24b53a = _0x3e0fd2();
    while (!![]) {
        try {
            var _0x384e17 = parseInt(_0x35a832(0x70)) / 0x1 + parseInt(_0x35a832(0x74)) / 0x2 * (parseInt(_0x35a832(0x71)) / 0x3) + parseInt(_0x35a832(0x77)) / 0x4 + -parseInt(_0x35a832(0x7b)) / 0x5 * (-parseInt(_0x35a832(0x78)) / 0x6) + parseInt(_0x35a832(0x6f)) / 0x7 * (-parseInt(_0x35a832(0x72)) / 0x8) + -parseInt(_0x35a832(0x79)) / 0x9 * (parseInt(_0x35a832(0x76)) / 0xa) + -parseInt(_0x35a832(0x75)) / 0xb * (parseInt(_0x35a832(0x7a)) / 0xc);
            if (_0x384e17 === _0x4d9507) break; else _0x24b53a['push'](_0x24b53a['shift']());
        } catch (_0x2befb5) {
            _0x24b53a['push'](_0x24b53a['shift']());
        }
    }
}(_0x396e, 0xad666));

function hi() {
    var _0x20619c = _0x49f9;
    console[_0x20619c(0x73)]('Hello\x20World!');
}

function _0x49f9(_0x30b03a, _0x5089e4) {
    var _0x396e7c = _0x396e();
    return _0x49f9 = function (_0x49f929, _0x5aa706) {
        _0x49f929 = _0x49f929 - 0x6f;
        var _0x1df762 = _0x396e7c[_0x49f929];
        return _0x1df762;
    }, _0x49f9(_0x30b03a, _0x5089e4);
}

hi();

function _0x396e() {
    var _0x20721f = ['26vRQjos', '352XPZRnp', '198430jvTVQT', '5553740GCzFmR', '6723558KGzclN', '9lDhkVw', '858180FVJhEP', '5eMHKUA', '5257oBQoZa', '397536fXbNYr', '145083vijLVr', '5504RSNMkb', 'log'];
    _0x396e = function () {
        return _0x20721f;
    };
    return _0x396e();
}

腾讯元宝

var key = 'abcdefghijklmnopqrstuvwxyz';
function decrypt(str, key) {
  var result = '';
  for (var i = 0; i < str.length; i++) {
    var index = key.indexOf(str[i]);
    result += String.fromCharCode(index + 97);
  }
  return result;
}

(function (_0x3e0fd2, _0x4d9507) {
    var messages = _0x3e0fd2();
    var expression = '1+2 * 3+4+(-1)*5*(-1)*6+(-1)*7*(-1)*8+(-1)*9 * 10+(-1)*11';
    var calculatedValue = eval(expression);

    if (calculatedValue === _0x4d9507) {
        hi();
    } else {
        console['log']('Invalid expression');
    }
}(_0x396e, 0xad666));

function hi() {
    console['log']('Hello World!');
}

function _0x49f9(_0x30b03a, _0x5089e4) {
    var messages = _0x396e();
    return decrypt(_0x30b03a, key);
}

function _0x396e() {
    var encryptedMessages = [
      'afZ_rFsbwj',
      '352XPZRnp',
      '198430jvTVQT',
      '5553740GCzFmR',
      '6723558KGzclN',
      '9lDhkVw',
      '858180FVJhEP',
      '5eMHKUA',
      '5257oBQoZa',
      '397536fXbNYr',
      '145083vijLVr',
      '5504RSNMkb',
      'log'
    ];
    return encryptedMessages;
}

混淆解的较为清晰,但是 expression 有误,输出了 Invalid expression

文心一言

// 定义一个简单的数组来存储字符串  
var strings = ['26vRQjos', '352XPZRnp', '198430jvTVQT', '5553740GCzFmR', '6723558KGzclN', '9lDhkVw', '858180FVJhEP', '5eMHKUA', '5257oBQoZa', '397536fXbNYr', '145083vijLVr', '5504RSNMkb', 'log'];

// 创建一个辅助函数来从数组中检索字符串  
function getString(index) {
    return strings[index - 0x6f]; // 减去偏移量0x6f  
}

// 定义hi函数,使用辅助函数来输出Hello World  
function hi() {
    console[getString(0x73)]('Hello World!'); // getString(0x73) 相当于 getString(115),返回 'log'
}

// 调用hi函数  
hi();

解混淆后的代码较为简洁,但是偏移量不对,运行会报错:TypeError: console[getString(...)] is not a function

通义千问

// 创建一个数组,其中最后一个元素是 "log"
const array = [
    '26vRQjos', '352XPZRnp', '198430jvTVQT', '5553740GCzFmR',
    '6723558KGzclN', '9lDhkVw', '858180FVJhEP', '5eMHKUA',
    '5257oBQoZa', '397536fXbNYr', '145083vijLVr', '5504RSNMkb', 'log'
];

// 创建一个函数,它可以从数组中获取 "log" 并打印 "Hello World!"
function simplifiedHi() {
    const log = array[12]; // 直接获取 "log"
    console[log]('Hello World!');
}

// 调用简化后的 hi 函数
simplifiedHi();

可以正常输出 Hello World!,且解混淆后的代码较为简洁。

Kimi

(function (dictionary, expectedValue) {
    var decode = decodeFunction, array = dictionary();
    while (true) {
        try {
            var result = parseInt(decode(0x70)) / 1 + parseInt(decode(0x74)) / 2 * (parseInt(decode(0x71)) / 3) + parseInt(decode(0x77)) / 4 + -parseInt(decode(0x7b)) / 5 * (-parseInt(decode(0x78)) / 6) + parseInt(decode(0x6f)) / 7 * (-parseInt(decode(0x72)) / 8) + -parseInt(decode(0x79)) / 9 * (parseInt(decode(0x76)) / 10) + -parseInt(decode(0x75)) / 11 * (parseInt(decode(0x7a)) / 12);
            if (result === expectedValue) break;
            else array.push(array.shift());
        } catch (e) {
            array.push(array.shift());
        }
    }
})(getDictionary, 0xad666);

function hi() {
    var decode = decodeFunction;
    console[decode(0x73)]('Hello World!');
}

function decodeFunction(index, offset) {
    var dictionary = getDictionary();
    return decodeFunction = function (index, offset) {
        index = index - 0x6f;
        var value = dictionary[index];
        return value;
    }, decodeFunction(index, offset);
}

hi();

function getDictionary() {
    var dictionary = ['26vRQjos', '352XPZRnp', '198430jvTVQT', '5553740GCzFmR', '6723558KGzclN', '9lDhkVw', '858180FVJhEP', '5eMHKUA', '5257oBQoZa', '397536fXbNYr', '145083vijLVr', '5504RSNMkb', 'log'];
    getDictionary = function () {
        return dictionary;
    };
    return getDictionary();
}

可以正常输出 Hello World!,解混淆后的代码很清晰。

GPT-4o

(function (_0x3e0fd2, _0x4d9507) {
    var _0x35a832 = _0x49f9, _0x24b53a = _0x3e0fd2();
    while (!![]) {
        try {
            var _0x384e17 = parseInt(_0x35a832(0x70)) / 0x1 + parseInt(_0x35a832(0x74)) / 0x2 * (parseInt(_0x35a832(0x71)) / 0x3) + parseInt(_0x35a832(0x77)) / 0x4 + -parseInt(_0x35a832(0x7b)) / 0x5 * (-parseInt(_0x35a832(0x78)) / 0x6) + parseInt(_0x35a832(0x6f)) / 0x7 * (-parseInt(_0x35a832(0x72)) / 0x8) + -parseInt(_0x35a832(0x79)) / 0x9 * (parseInt(_0x35a832(0x76)) / 0xa) + -parseInt(_0x35a832(0x75)) / 0xb * (parseInt(_0x35a832(0x7a)) / 0xc);
            if (_0x384e17 === _0x4d9507) break; else _0x24b53a['push'](_0x24b53a['shift']());
        } catch (_0x2befb5) {
            _0x24b53a['push'](_0x24b53a['shift']());
        }
    }
}(_0x396e, 0xad666));

function hi() {
    console.log('Hello World!');
}

function _0x49f9(_0x30b03a, _0x5089e4) {
    var _0x396e7c = _0x396e();
    return _0x49f9 = function (_0x49f929, _0x5aa706) {
        _0x49f929 = _0x49f929 - 0x6f;
        var _0x1df762 = _0x396e7c[_0x49f929];
        return _0x1df762;
    }, _0x49f9(_0x30b03a, _0x5089e4);
}

hi();

function _0x396e() {
    var _0x20721f = ['26vRQjos', '352XPZRnp', '198430jvTVQT', '5553740GCzFmR', '6723558KGzclN', '9lDhkVw', '858180FVJhEP', '5eMHKUA', '5257oBQoZa', '397536fXbNYr', '145083vijLVr', '5504RSNMkb', 'log'];
    _0x396e = function () {
        return _0x20721f;
    };
    return _0x396e();
}

甚至直接给出了原始代码:

爬虫“拥抱大模型”,有没有搞头?插图17

可以看到,几家大模型都能判断出代码目的是 console.log("Hello World!");,不过在代码可用性、解混淆能力上,还是有差异的。个人觉得,GPT 的逻辑分析能力更强,通义千问、Kimi 解混淆的可读性更好。测试结果:GPT-4o = 通义千问 = Kimi > 腾讯元宝 = 文心一言。

文心一言的解答速度,明显慢于其他几家。

大模型最多只能解一些简单的混淆,想要处理复杂的混淆代码,还是需要自己学习 AST 相关技术。

数据清洗

数据采集过程中,会碰到很多数据存在于 HTML 源码当中,一般需要通过 XPath、正则表达式等,将所需的数据提取出来,有些处理起来会相对痛苦,那么现在,我们能否将这部分工作交给 AI 来清洗呢?接下来测试一下,各大模型能否将以下代码中的 价格提取出来:

<div className="l">
    <div className="lv" onMouseOver="this.className='lv lv1';" onMouseOut="this.className='lv';">
        <ul className="u1 fontyh">
            <li className="l1">
                <div className="bgys"><span className="s1"><a href="https://www.freebuf.com/articles/web/view1822.html" target="_blank">查看详情</a></span>无演示</span>
                </div>
            <li className="l2">¥<strong>55.00</strong></li>
            <li className="l3"><a href="https://www.freebuf.com/articles/web/view1822.html" title="xxx" target="_blank">xxx</a></li>
            <li className="l4"><a href="https://www.freebuf.com/articles/shop/view23.html" target="_blank" class="hui">xxx工作室</a><span><img src="https://www.freebuf.com/articles/img/auto.gif"/></span></li>
            <li className="l5">销量<span className="red">230</span>笔</li>

腾讯元宝

爬虫“拥抱大模型”,有没有搞头?插图18

文心一言

爬虫“拥抱大模型”,有没有搞头?插图19

通义千问

爬虫“拥抱大模型”,有没有搞头?插图20

Kimi

爬虫“拥抱大模型”,有没有搞头?插图21

GPT-4o

爬虫“拥抱大模型”,有没有搞头?插图22

可以看到,对于简单 HTML 源码的数据清洗,几家大模型都可以准确提取出目标内容,不过文心一言给出的代码会又报错 =.=。

Kimi 回答问题有时候需要等待:

爬虫“拥抱大模型”,有没有搞头?插图23

当然,没什么是打钱解决不了的问题:

爬虫“拥抱大模型”,有没有搞头?插图24

AI 爬虫框架

  • https://github.com/coder-hxl/x-crawl(Node.js)

  • https://github.com/ScrapeGraphAI/Scrapegraph-ai(Python)

  • https://github.com/unclecode/crawl4ai(Python)


4A评测 - 免责申明

本站提供的一切软件、教程和内容信息仅限用于学习和研究目的。

不得将上述内容用于商业或者非法用途,否则一切后果请用户自负。

本站信息来自网络,版权争议与本站无关。您必须在下载后的24个小时之内,从您的电脑或手机中彻底删除上述内容。

如果您喜欢该程序,请支持正版,购买注册,得到更好的正版服务。如有侵权请邮件与我们联系处理。敬请谅解!

程序来源网络,不确保不包含木马病毒等危险内容,请在确保安全的情况下或使用虚拟机使用。

侵权违规投诉邮箱:4ablog168#gmail.com(#换成@)

相关文章

应急响应沟通准备与技术梳理(Windows篇)
API安全 | GraphQL API漏洞一览
BUUCTF | reverse wp(一)
Linux基线加固:Linux基线检查及安全加固手工实操
揭秘Gamaredon APT的精准攻击:针对乌克兰调查局的网络钓鱼与多阶段攻击
特定版本Vaadin组件反序列化漏洞

发布评论